β-Catenin stabilization in NOD dendritic cells increases IL-12 production and subsequent induction of IFN-γ-producing T cells.

In this study, we report that β-catenin, a multifunctional protein involved in inflammation, is dramatically increased in DC from NOD mice. We further investigated the mechanisms leading to accumulation of β-catenin in NOD DC and its role in the inflammatory pathogenic responses associated with T1D. Hyperphosphorylation of β-catenin at a stabilizing residue, serine 552, mediated by activation of Akt, appears to lead to β-catenin accumulation in NOD DC. Elevated β-catenin in DC correlated with IL-12 production and induction of IFN-γ-producing CD4 cells. On the one hand, knockdown/inhibition of β-catenin significantly reduced NOD DC production of IL-12 and their ability to induce IFN-γ-producing CD4 cells. On the other hand, overexpression of β-catenin in control DC resulted in increased IL-12 production and induction of IFN-γ-production in T cells. Additionally, we found that β-catenin inhibitors decreased NF-κB activation in NOD DC and IFN-γ production by NOD T cells in vivo. These data strongly suggest that accumulation of β-catenin in DC from NOD mice drives IL-12 production, and consequently, development of pathogenic IFN-γ-producing T cells. Targeting the defect responsible for β-catenin accumulation and subsequent overproduction of pro-inflammatory cytokines by NOD DC could be an effective therapeutic strategy for the prevention and/or treatment of T1D. PMID: 31568613 [PubMed - as supplied by publisher]
Source: Journal of Leukocyte Biology - Category: Hematology Authors: Tags: J Leukoc Biol Source Type: research