CaWRKY27 negatively regulates salt and osmotic stress responses in pepper

Publication date: Available online 30 September 2019Source: Plant Physiology and BiochemistryAuthor(s): Jinhui Lin, Fengfeng Dang, Yongping Chen, Deyi Guan, Shuilin HeAbstractWRKY transcription factors are key regulatory components of plant responses to both biotic and abiotic stresses. In pepper (Capsicum annuum), CaWRKY27 positively regulates resistance to the pathogenic bacterium Ralstonia solanacearum and negatively regulates thermotolerance. Here, we report that CaWRKY27 functions in the response to salinity and osmotic stress. CaWRKY27 transcription was induced by salinity, osmotic, and abscisic acid (ABA) treatments, as determined using qPCR and GUS assays. Transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants heterologously expressing CaWRKY27 had an increased sensitivity to salinity and osmotic stress, with a higher inhibition of both root elongation and whole plant growth, more severe chlorosis and wilting, lower germination rates, and an enhanced germination sensitivity to ABA than the corresponding wild-type plants. Furthermore, most marker genes associated with reactive oxygen species (ROS) detoxification and polyamine and ABA biosynthesis, as well as stress-responsive genes NtDREB3, were downregulated in plants transgenically expressing CaWRKY27 upon exposure to salinity or osmotic stress. Consistently, silencing of CaWRKY27 using virus-induced gene silencing conferred tolerance to salinity and osmotic stress in pepper plants. These findings sug...
Source: Plant Physiology and Biochemistry - Category: Biochemistry Source Type: research