Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative.

Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative. Cancer Biol Ther. 2019 Sep 25;:1-14 Authors: Lozano-Rosas MG, Chávez E, Velasco-Loyden G, Domínguez-López M, Martínez-Pérez L, Chagoya De Sánchez V Abstract S-adenosylmethionine (SAM), biosynthesis from methionine and ATP, is markedly decreased in hepatocellularular carcinoma (HCC) for a diminution in ATP levels, and the down regulation of the liver specific MAT1a enzyme. Its metabolic activity is very important in the transmethylation reactions, the methionine cycle, the biosynthesis of glutathione (GSH) and the polyamine pathway, which are markedly affected in the HCC. The chemo-preventive effect of IFC305 in HCC induced by DEN, and the increase of ATP and SAM in CCl4-induced cirrhosis have been previously demonstrated. The aim of this work was to test whether this chemo-preventive effect is mediated by the induction of SAM biosynthesis and its metabolic flow. SAM hepatic levels and the methionine cycle were recovered with IFC305 treatment, restoring transmethylation and transsulfuration activities. IFC305 treatment, increased MAT1a levels and decrease MAT2a levels through modulation of their post-transcriptional regulation. This occurred through the binding of the AUF1 (binding factor 1 AU-rich sites) and HuR (human antigen R) ribonucleoproteins to Mat1a and Mat2a messenger RNAs, w...
Source: Cancer Biology and Therapy - Category: Cancer & Oncology Authors: Tags: Cancer Biol Ther Source Type: research