A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite

Publication date: Available online 23 September 2019Source: CarbonAuthor(s): Mingyu Zhang, John T.W. YeowAbstractA flexible, self-powered and semi-transparent mid-infrared photodetector is demonstrated with graphene and poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT: PSS) composite on poly vinyl alcohol (PVA) substrate. The effective dispersion of graphene nanoplatelets within polymer chains has yielded a low requisite loading of graphene – only 3 wt% for the implement of a detector with optimized photo-thermoelectric effect, high flexibility and high transparency. Under a broadband infrared radiation with peak wavelength at 7.8 μm, 1.4 × 107 cm Hz1/2 W−1 photo detectivity is achieved in composite detector, which is 22 times higher than pure PEDOT: PSS. The demonstrated detector array exhibits good optical transparency of 63% and is capable of being bent to a radius of 1 mm due to strong interaction between composite film and PVA substrate. These features make this scalable mid-infrared photodetector very promising as next-generation optoelectronics.Graphical abstract
Source: Carbon - Category: Materials Science Source Type: research