Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma.

Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Deliv. 2019 Dec;26(1):918-927 Authors: Gu W, Zhang T, Gao J, Wang Y, Li D, Zhao Z, Jiang B, Dong Z, Liu H Abstract Protein-based nanocarriers with inherent biocompatibility have been widely served as building blocks to construct versatile therapeutic nanoplatforms. Herein, bovine serum albumin-iridium oxide nanoparticles (denoted BSA-IrO2 NPs) are successfully synthesized via one-step biomineralization approach. The BSA-IrO2 NPs exhibits uniform size (40 nm), superb biocompatibility and high drug loading capacity for doxorubicin (27.4 wt%). Under near-infrared (NIR) laser irradiation, the as-prepared BSA-IrO2 NPs exhibited high photothermal conversion ability (54.3%) and good photostability. The in vitro drug release experiments displayed pH and NIR laser -triggered DOX release profiles, which could enhance the therapeutic anticancer effect. By utilizing this DOX loaded nanoplatform, effective synergistic chemo-photothermal therapy against human osteosarcoma can be realized, which has been systematically verified both in vitro and in vivo. Notably, in vivo pharmacokinetics studies showed that BSA-IrO2@DOX had prolonged blood circulation time due to the BSA component can improve the stealthiness of the nanoparticles during the blood circulation. Meanwhile, in vitro and in vivo toxici...
Source: Drug Delivery - Category: Drugs & Pharmacology Tags: Drug Deliv Source Type: research