Electronic properties and carrier transport properties of low dimensional aluminium doped silicene nanostructure

Publication date: Available online 18 September 2019Source: Physica E: Low-dimensional Systems and NanostructuresAuthor(s): Mu Wen Chuan, Kien Liong Wong, Afiq Hamzah, Shahrizal Rusli, Nurul Ezaila Alias, Cheng Siong Lim, Michael Loong Peng TanAbstractUnlike graphene which requires redesigned fabrication technique, silicene is predicted to be compatible with the silicon wafer technology. However, similar to graphene, the gapless properties of silicene hinder its application as field-effect transistors (FETs). By employing nearest neighbour tight-binding (NNTB) approach and Landuaer-Büttiker formalism, the analytical equations for electronic band structure, density of states (DOS), intrinsic carrier concentration, intrinsic velocity and ideal ballistic I–V characteristics have been derived. The simulated results using MATLAB show that a band gap of 0.78 eV has been induced in uniformly doped silicene with aluminium (AlSi3NW) in the zigzag direction. The device performance metrics extracted from the current-voltage (I–V) characteristics are subthreshold swing of 60mV/decade and threshold voltage of 0.65V under ideal conditions at room temperature. The results indicate that AlSi3NW device possesses good channel control and effective switching behaviour. The proposed model demonstrates that AlSi3NW is a potential candidate for future nanoelectronic applications.Graphical abstract
Source: Physica E: Low dimensional Systems and Nanostructures - Category: Nanotechnology Source Type: research
More News: Nanotechnology