Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms.

Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal. 2019 Sep 13;:109418 Authors: Niemeyer A, Rinne A, Kienitz MC Abstract G Protein-activated K+ channels (GIRK) channels are inhibited by depletion of PtdIns(4,5)P2(PIP2), and/or channel phosphorylation by proteinkinase C (PKC). By using FRET-based biosensors, expressed in HEK293 cells or in atrial myocytes, we quantified receptor-specific Gq-coupled receptor (GqPCR) signalling on the level of phospholipase C (PLC) activation by monitoring PIP2-depletion and diacylglycerol (DAG) formation. Simultaneous voltage-clamp experiments on GIRK channel activity were performed as a functional readout for Gq-coupled α1B- and ET-receptor-induced signalling. GqPCR-induced fast inhibition of GIRK channel activity is mediated by depletion of PIP2, whereas phosphorylation of GIRK channels results in delayed, but effective GIRK current inhibition. We demonstrate a receptor-induced inhibitory component on GIRK activity that is independent of PIP2-depletion, but attributed to the activation of Ca2+-dependent PKC isoforms. As a novel finding, we demonstrate receptor-dependent differences in GIRK inhibition according to receptor-specific activation of the Ca2+-dependent PKC isoforms PKCα and PKCβ. Pharmacological inhibition of PKCα, but not of PKCβ, abolishes GIRK inhibition induced by stimulation of α1B-receptors. In contrast, ET-R-indu...
Source: Cellular Signalling - Category: Cytology Authors: Tags: Cell Signal Source Type: research
More News: Cytology