Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation

AbstractEnhanced external counterpulsation (EECP) is a noninvasive treatment method for coronary artery atherosclerosis that acts on the vascular endothelial cells. The intracoronary hemodynamic parameters that influence long-term treatment effect are the fundamental factors for the inhibition of intimal hyperplasia, which cannot be measured in real time. In order to optimize the long-term treatment effect of coronary heart disease, it is necessary to establish a method for quantified calculation of intracoronary hemodynamic parameters during counterpulsation to research the long-term hemodynamic mechanism of EECP. A geometric multiscale model coupled by the zero-dimensional (0D) lumped parameter model and the three-dimensional (3D) model of narrow coronary artery was established for the simulation of intracoronary hemodynamic environment. The 3D model was used to calculate the hemodynamic parameters such as wall shear stress (WSS) and oscillatory shear index (OSI), while the 0D model was used to simulate the blood circulatory system. Sequential pressure was applied to calves, thighs, and buttocks module in 0D model with the consideration of vessel collapse. Hemodynamic performance was compared with clinical reports to verify the effectiveness of the method. There were significant increases of the diastolic blood pressure (DBP), coronary flow, and the area-averaged WSS during application of EECP, while OSI behind stenosis has some decrease. The waveforms of coronary flow has ...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research