Synthetic peptide optimization improves the inhibition of dengue NS2B-NS3 protease and dengue replication in vitro.

In this study, we employed computational studies using YASARA, HADDOCK server and PyMOL software to generate short and linear peptides based on a reference peptide, CP5-46A, to block DENV NS2B-NS3 protease. The inhibition potencies of the peptides were evaluated using in-house DENV2 serine protease and fluorogenic peptide substrates. In vitro analyses were performed to determine the peptides cytotoxicity and the inhibitory effects against DENV2 replication in WRL-68 cells. Our computational analyses revealed that the docking energy of AYA3, a 16 amino acid (aa) (-81.2 ± 10.6 kcal/mol) and AYA9, a 15 aa peptide (-83.8 ± 6.8 kcal/mol) to DENV NS2B-NS3 protease were much lower than the reference peptide (46 aa; -70.9 ± 7.8 kcal/mol) and the standard protease inhibitor, aprotinin (58 aa; -48.2 ± 10.6 kcal/mol). Both peptides showed significant inhibition against DENV2 NS2B-NS3 protease activity with IC50 values of 24 µM and 23 µM, respectively. AYA3 and AYA9 peptides also demonstrated approximately 68% and 83% of viral plaque reduction without significantly affecting cell viability at 50 µM concentration. In short, we generated short linear peptides with lower cytotoxic effect and substantial antiviral activities against DENV2. Further studies are required to investigate the inhibitory effects of these peptides in vivo. Keywords: peptide inhibitors; dengue virus; NS2B-NS3 protease; plaque reduction. PMID: 31507193 [PubMed - in process]
Source: Acta Virologica - Category: Infectious Diseases Authors: Tags: Acta Virol Source Type: research