Uncovering Structural and Molecular Dynamics of ESAT-6: β2M Interaction: Asp53 of Human β2-Microglobulin Is Critical for the ESAT-6:β2M Complexation.

In this study, using computational and site-directed mutagenesis studies, we demonstrate the presence of strong noncovalent hydrophobic interactions between ESAT-6 and β2M in addition to the vital hydrogen bonding between the aspartate residue (Asp53) of β2M and methionine (Met93) of ESAT-6. Docking-based high-throughput virtual screening followed by 16-point screening on microscale thermophoresis resulted in the identification of two potent inhibitors (SM09 and SM15) that mask the critical Met93 residue of ESAT-6 that is required for ESAT-6:β2M interaction and could rescue cell surface expression of β2M and HLA in human macrophages as well as MHC class I Ag presentation suppressed by ESAT-6 in peritoneal macrophages isolated from C57BL/6 mice. Both SM09 and SM15 significantly inhibited intracellular survival of M. tuberculosis in human macrophages. Further, we characterized the physicochemical properties involved in the ESAT-6:β2M complexation, which may help in understanding host-pathogen interactions. PMID: 31484733 [PubMed - as supplied by publisher]
Source: Journal of Immunology - Category: Allergy & Immunology Authors: Tags: J Immunol Source Type: research