Polyploidy in invasive Solidago canadensis increased plant nitrogen uptake, and abundance and activity of microbes and nematodes in soil

Publication date: Available online 6 September 2019Source: Soil Biology and BiochemistryAuthor(s): Shuqi Wu, Jiliang Cheng, Xinyu Xu, Yi Zhang, Yexin Zhao, Huixin Li, Sheng QiangAbstractPolyploidization (i.e., multiplication of genome size) is a major driver of plant evolution and is believed to play a significant role in plant invasion. One hypothesis states that polyploids possess larger root systems with increased root exudation and thus, induce a greater effect on the rhizosphere compared to their diploids counterparts. Few experiments, however, have explicitly tested the impacts of the polyploidy of plants on soil organisms in the field. Using a common garden approach, we examined the impacts of native and introduced populations of Solidago canadensis with differing ploids (diploid, tetraploid and hexaploid) on soil microbes, nematodes, and carbon (C) - nitrogen (N) turnover. Polyploidy generally increased microbial biomass in soil: while the biomass of all microbial groups was significantly higher under introduced than native tetra- and hexa-ploids, there was no significant difference in soil bacteria, fungi, and actinomycetes between diploids of the native and introduced populations. The effect of polyploids on soil microbial biomass was greater in November than July, suggesting that the effect becomes stronger later in the growing season. The impact of polyploidy on nematodes was largely dependent on trophic status; polyploids did not significantly affect bacterivores...
Source: Soil Biology and Biochemistry - Category: Biology Source Type: research