The complete genome sequence of the thermophilic bacterium Laceyella sacchari FBKL4.010 reveals the basis for tetramethylpyrazine biosynthesis in Moutai ‐flavor Daqu

In this study, the whole genome was sequenced and analyzed. The complete genome consists of one 3,374,379‐bp circular chromosome with 3,145 coding sequences (CDSs), seven clustered regularly interspaced short palindromic repeat (CRISPR) regions of 12 CRISPR s. Moreover, we identified that the genome contains genes encoding key enzymes such as proteases, peptidases, and acetolactate synthase (ALS) of the tetramethylpyrazine metabolic pathway. Metabolic pathways relevant to tetramethylpyrazine synthesis were also reconstructed based on the Kyoto Encyclop edia of Genes and Genomes (KEGG) PATHWAY database. Annotation and syntenic analyses using antiSMASH 4.0 also revealed the presence of two gene clusters in this strain that differ from known tetramethylpyrazine synthesis clusters, with one encoding amino acid dehydrogenase (ADH) and the other encodin g transaminase in tetramethylpyrazine metabolism. The results of this study provide flavor and genomic references for further research on the flavor‐producing functions of strain FBKL4.010 in the Moutai liquor‐making process.
Source: MicrobiologyOpen - Category: Microbiology Authors: Tags: ORIGINAL ARTICLE Source Type: research