Semaphorin-5A downregulation is associated with enhanced migration and invasion of BRAF-positive melanoma cells under vemurafenib treatment in melanomas with heterogeneous BRAF status

Tumor heterogeneity affects the efficacy of anticancer treatment as tumor subclones with distinct molecular patterns may be present within one tumor, leading to differing sensitivities to chemotherapeutic agents. In the present study, six melanoma tissue fragments were obtained from different parts of tumor of four patients and then the effect of vemurafenib treatment on biological characteristics and molecular processes of cell cultures was estimated by using MTT-test, apoptosis, migration and invasion assays, PCR real time. There was different BRAF status determined between cells derived from the central and peripheral regions of primary melanoma tumors. BRAF-positive melanoma cells showed an increased apoptotic rate under vemurafenib treatment, as well as increased migration and invasion rates, whereas BRAF-negative melanoma cells did not exhibit such tendency. Furthermore, semaphorin-5A levels were diminished in BRAF-positive cells, but not in BRAF-negative ones, which could be related to increased migration and invasion. Melanoma cells derived from different regions of the same tumor may differ by mutations status, molecular processes and biological response to target therapy. The downregulation of semaphorin-5A may be involved in divergent effects of anticancer agents on tumor cell biology.
Source: Melanoma Research - Category: Cancer & Oncology Tags: Short Communications: Basic Science Source Type: research