Intracellular Ca2+-dependent formation of N-acyl-phosphatidylethanolamines by human cytosolic phospholipase A2ε

Publication date: Available online 29 August 2019Source: Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of LipidsAuthor(s): Smriti Sultana Binte Mustafiz, Toru Uyama, Katsuya Morito, Naoko Takahashi, Katsuhisa Kawai, Zahir Hussain, Kazuhito Tsuboi, Nobukazu Araki, Kei Yamamoto, Tamotsu Tanaka, Natsuo UedaAbstractN-Acyl-phosphatidylethanolamines (NAPEs) are known to be precursors of bioactive N-acylethanolamines (NAEs), including the endocannabinoid arachidonoylethanolamide (anandamide) and anti-inflammatory palmitoylethanolamide. In mammals, NAPEs are produced by N-acyltransferases, which transfer an acyl chain from the sn-1 position of glycerophospholipid to the amino group of phosphatidylethanolamine (PE). Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ) was found to be Ca2+-dependent N-acyltransferase. However, it was poorly understood which types of phospholipids serve as substrates in living cells. In the present study, we established a human embryonic kidney 293 cell line, in which doxycycline potently induces human cPLA2ɛ, and used these cells to analyze endogenous substrates and products of cPLA2ɛ with liquid chromatography-tandem mass spectrometry. When treated with doxycycline and Ca2+ ionophore, the cells produced various species of diacyl- and alkenylacyl-types of NAPEs as well as NAEs in large quantities. Moreover, the levels of diacyl- and alkenylacyl-types of PEs and diacyl-phosphatidylcholines (PCs) decreased, while those of...
Source: Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids - Category: Lipidology Source Type: research