Nur77 limits endothelial barrier disruption to LPS in the mouse lung.

In this study, we found that Nur77 is expressed at high levels in the lung and its expression is markedly upregulated in response to LPS administration. While the pulmonary vasculature of mice that lacked Nur77 appeared to function normally under homeostatic conditions, we observed a dramatic decrease in its barrier functions after exposure to LPS, as demonstrated by an increase in serum proteins in the bronchoalveolar lavage fluid and a reduction in the expression of endothelial junctional proteins;VE-cadherin and β-catenin. Similarly, we found that siRNA knockdown of Nur77 in lung microvascular endothelial cells also reduced VE-cadherin and β-catenin expression and increased the quantity of FITC-labeled dextran transporting across LPS-injured endothelial monolayers. Consistent with Nur77 playing a vascular protective role, we found that adenoviral-mediated overexpression of Nur77 both enhanced expression of VE-cadherin and β-catenin and augmented endothelial barrier protection to LPS in cultured cells. Mechanistically, Nur77 appeared to mediate its protective effects, at least in part, by binding to β-catenin and preventing its degradation. Our findings demonstrate a key role for Nur77 in the maintenance of lung endothelial barrier protection to LPS and suggest that therapeutic strategies aimed at augmenting Nur77 levels might be effective in treating a wide variety of inflammatory vascular diseases of the lung. PMID: 31461311 [PubMed - as supplied by publisher]
Source: American Journal of Physiology. Lung Cellular and Molecular Physiology - Category: Cytology Authors: Tags: Am J Physiol Lung Cell Mol Physiol Source Type: research