Gut microbiota and osteoarthritis management: an expert consensus of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO).

Gut microbiota and osteoarthritis management: an expert consensus of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Ageing Res Rev. 2019 Aug 19;:100946 Authors: Biver E, Berenbaum F, Valdes AM, de Carvalho IA, Bindels LB, Brandi ML, Calder PC, Castronovo V, Cavalier E, Cherubini A, Cooper C, Dennison E, Franceschi C, Fuggle N, Laslop A, Miossec P, Thomas T, Tuzun S, Veronese N, Vlaskovska M, Reginster JY, Rizzoli R Abstract The prevalence of osteoarthritis (OA) increases not only because of longer life expectancy but also because of the modern lifestyle, in particular physical inactivity and diets low in fiber and rich in sugar and saturated fats, which promote chronic low-grade inflammation and obesity. Adverse alterations of the gut microbiota (GMB) composition, called microbial dysbiosis, may favor metabolic syndrome and inflammaging, two important components of OA onset and evolution. Considering the burden of OA and the need to define preventive and therapeutic interventions targeting the modifiable components of OA, an expert working group was convened by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) to review the potential contribution of GMB to OA. Such a contribution is supported by observational or dietary intervention studies in animal models of OA and in humans. In addition, several well-r...
Source: Ageing Research Reviews - Category: Genetics & Stem Cells Authors: Tags: Ageing Res Rev Source Type: research

Related Links:

This study was the first to demonstrate a causal relationship between glial senescence and neurodegeneration. In this study, accumulations of senescent astrocytes and microglia were found in tau-associated neurodegenerative disease model mice. Elimination of these senescent cells via a genetic approach can reduce tau deposition and prevent the degeneration of cortical and hippocampal neurons. Most recently, it was shown that clearance of senescent oligodendrocyte progenitor cells in AD model mice with senolytic agents could lessen the Aβ plaque load, reduce neuroinflammation, and ameliorate cognitive deficits. ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study provides direct evidence for the contribution of gut microbiota to the cognitive decline during normal aging and suggests that restoring microbiota homeostasis in the elderly may improve cognitive function. On Nutraceutical Senolytics https://www.fightaging.org/archives/2020/05/on-nutraceutical-senolytics/ Nutraceuticals are compounds derived from foods, usually plants. In principle one can find useful therapies in the natural world, taking the approach of identifying interesting molecules and refining them to a greater potency than naturally occurs in order to produce a usefully large therape...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we determine whether transient reintroduction of embryonic stem cell cycle miR-294 promotes cardiomyocyte cell cycle reentry enhancing cardiac repair after myocardial injury. A doxycycline-inducible AAV9-miR-294 vector was delivered to mice for activating miR-294 in myocytes for 14 days continuously after myocardial infarction. miR-294-treated mice significantly improved left ventricular functions together with decreased infarct size and apoptosis 8 weeks after MI. Myocyte cell cycle reentry increased in miR-294 hearts parallel to increased small myocyte number in the heart. Isolated adult myocytes from miR-...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this report, we propose that the molecular mechanisms of beneficial actions of CR should be classified and discussed according to whether they operate under rich or insufficient energy resource conditions. Future studies of the molecular mechanisms of the beneficial actions of CR should also consider the extent to which the signals/factors involved contribute to the anti-oxidative, anti-inflammatory, anti-tumor and other CR actions in each tissue or organ, and thereby lead to anti-aging and prolongevity. RNA Interference of ATP Synthase Subunits Slows Aging in Nematodes https://www.fightaging.org/archives/...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study suggests that exocrine glands can be induced from pluripotent stem cells for organ replacement regenerative therapy. Replacement of Aged Microglia Partially Reverses Cognitive Decline in Mice https://www.fightaging.org/archives/2018/10/replacement-of-aged-microglia-partially-reverses-cognitive-decline-in-mice/ Researchers here report on a compelling demonstration that shows the degree to which dysfunctional microglia contribute to age-related neurodegeneration. The scientists use a pharmacological approach to greatly deplete the microglial population and then allow it to recover naturally. The...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we found that TXNIP deficiency induces accelerated senescent phenotypes of mouse embryonic fibroblast (MEF) cells under high glucose condition and that the induction of cellular ROS or AKT activation is critical for cellular senescence. Our results also revealed that TXNIP inhibits AKT activity by a direct interaction, which is upregulated by high glucose and H2O2 treatment. In addition, TXNIP knockout mice exhibited an increase in glucose uptake and aging-associated phenotypes including a decrease in energy metabolism and induction of cellular senescence and aging-associated gene expression. We propose that...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
We examined associations between mortality and accelerometer-measured PA using age-relevant intensity cutpoints in older women of various ethnicities. The results support the hypothesis that higher levels of accelerometer-measured PA, even when below the moderate-intensity threshold recommended in current guidelines, are associated with lower all-cause and CVD mortality in women aged 63 to 99. Our findings expand on previous studies showing that higher self-reported PA reduces mortality in adults aged 60 and older, specifically in older women, and at less than recommended amounts. Moreover, our findings challenge th...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Diets | Eating Disorders & Weight Management | Genetics | Metabolic Syndrome | Nutrition | Obesity | Orthopaedics | Osteoarthritis | Osteoporosis | Saturated Fat | Study | Sugar