Induced Pluripotent Stem Cells for Regenerative Medicine

This review paper looks over the technology of induced pluripotency in the context of its ability to advance the state of regenerative medicine. A little over a decade ago, it was discovered that expression just a few genes in any adult cell reprogrammed it to become an induced pluripotent stem cell, near identical to an embryonic stem cell. Such pluripotent cells are capable of forming any type of cell in the body, given the research and development needed to establish the right recipe of stimuli and signals. This technology is not just interesting as a way to potentially produce supplies of any cell and tissue type needed for regenerative therapies, but also for the fact that reprogrammed cells restore lost mitochondrial function and reverse their epigenetic markers of age - though still retaining many other forms of age-related molecular damage. That second discovery has given rise to companies such as Turn.bio, working on ways to reprogram cells in situ in the body to restore tissue function. In 2006, researchers reported for the first time the reprogramming of induced pluripotent stem cells (iPSC) from mouse somatic cells by forced expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc, now termed Yamanaka factors. Subsequently, the Yamanaka factors, or other combinations of factors were successfully used to reprogram a wide range of mouse or human somatic cells into iPSC. iPSC achieve a high degree of dedifferentiation and acquire properties simila...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs