Willed ‑movement training reduces middle cerebral artery occlusion‑induced motor deficits and improves angiogenesis and survival of cerebral endothelial cells via upregulating hypoxia‑inducible factor‑1α.

Willed‑movement training reduces middle cerebral artery occlusion‑induced motor deficits and improves angiogenesis and survival of cerebral endothelial cells via upregulating hypoxia‑inducible factor‑1α. Mol Med Rep. 2019 Aug 09;: Authors: Zhou Z, Ren X, Zhou W, Zheng L Abstract Willed movement facilitates neurological rehabilitation in patients with stroke. Focal ischaemia is the hallmark of patients after stroke, though the detailed molecular mechanism by which willed movement affects neurological rehabilitation after stroke is not fully understood. The aim of the present study was to dissect the key factors of the hypoxia signaling pathway responsible for the willed movement‑improved rehabilitation. Sprague‑Dawley rats undergoing right middle cerebral artery occlusion (MCAO) surgery were randomly divided into four groups: MCAO alone, willed movement (WM), environmental modification (EM) and common rehabilitation (CR). The neurological behaviour score was assessed, and infarction areas were detected by TTC staining. In addition, angiogenesis‑associated genes (vascular epithelial growth factor, angiogenin‑1, matrix metalloproteinases‑2 and ‑9) and hypoxia inducible factor (HIF)‑1α expression was investigated in cells derived from MCAO, WM, EM and CR groups. Finally, the role of HIF‑1α using HIF‑1α knockdown in HUVECs under hypoxic conditions was evaluated. WM significantly improved neurological behaviou...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research