Acute L-DOPA administration reverses changes in firing pattern and low frequency oscillatory activity in the entopeduncular nucleus from long term L-DOPA treated 6-OHDA-lesioned rats.

Acute L-DOPA administration reverses changes in firing pattern and low frequency oscillatory activity in the entopeduncular nucleus from long term L-DOPA treated 6-OHDA-lesioned rats. Exp Neurol. 2019 Aug 16;:113036 Authors: Aristieta A, Ruiz-Ortega JA, Morera-Herreras T, Miguelez C, Ugedo L Abstract The pathophysiology of Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) is associated with aberrant neuronal activity and abnormal high levels of oscillatory activity and synchronization in several basal ganglia nuclei and the cortex. Previously, we have shown that the firing activity of neurons in the substantia nigra pars reticulata (SNr) is relevant in dyskinesia and may be driven by subthalamic nucleus (STN) hyperactivity. Conversely, low frequency oscillatory activity and synchronization in these structures seem to be more important in PD because they are not influenced by prolonged L-DOPA administration. The aim of the present study was to assess (through single-unit extracellular recording techniques under urethane anaesthesia) the neuronal activity of the entopeduncular nucleus (EPN) and its relationship with LID and STN hyperactivity, together with the oscillatory activity and synchronization between these nuclei and the cerebral cortex in 6-OHDA-lesioned rats that received long term L-DOPA treatment (or not). Twenty-four hours after the last L-DOPA injection the firing activity of EPN neurons in long term L-DOPA tre...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research