Hepatic steroid sulfatase critically determines estrogenic activities of conjugated equine estrogens in human cells in vitro and in mice [Molecular Bases of Disease]

Conjugated equine estrogens (CEEs), whose brand name is Premarin, are widely used as a hormone-replacement therapy (HRT) drug to manage postmenopausal symptoms in women. Extracted from pregnant mare urine, CEEs are composed of nearly a dozen estrogens existing in an inactive sulfated form. To determine whether the hepatic steroid sulfatase (STS) is a key contributor to the efficacy of CEEs in HRT, we performed estrogen-responsive element (ERE) reporter gene assay, real-time PCR, and UPLC-MS/MS to assess the STS-dependent and inflammation-responsive estrogenic activity of CEEs in HepG2 cells and human primary hepatocytes. Using liver-specific STS-expressing transgenic mice, we also evaluated the effect of STS on the estrogenic activity of CEEs in vivo. We observed that CEEs induce activity of the ERE reporter gene in an STS-dependent manner and that genetic or pharmacological inhibition of STS attenuates CEE estrogenic activity. In hepatocytes, inflammation enhanced CEE estrogenic activity by inducing STS gene expression. The inflammation-responsive estrogenic activity of CEEs, in turn, attenuated inflammation through the anti-inflammatory activity of the active estrogens. In vivo, transgenic mice with liver-specific STS expression exhibited markedly increased sensitivity to CEE-induced estrogenic activity in the uterus resulting from increased levels of liver-derived and circulating estrogens. Our results reveal a critical role of hepatic STS in mediating the hormone-replacin...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Metabolism Source Type: research