Transplantation of bone marrow mesenchymal stem cells alleviates spinal cord injury via inhibiting Notch signaling.

Transplantation of bone marrow mesenchymal stem cells alleviates spinal cord injury via inhibiting Notch signaling. Eur Rev Med Pharmacol Sci. 2019 Aug;23(3 Suppl):31-38 Authors: Chen Y, Lian XH, Liao LY, Liu YT, Liu SL, Gao Q Abstract OBJECTIVE: To analyze the mechanism of action by which the bone marrow mesenchymal stem cells (BMMSCs) repair the spinal cord injury (SCI) in rats via the Notch signaling pathway. MATERIALS AND METHODS: A total of 75 male rats aged about 12 weeks old were equally divided into group A (sham operation group), group B (model group), and group C (model group + BMMSCs). The SCI model was established by Allen's method, and the differences in presenilin-1, Hes1 and Notch proteins among the three groups of rats were evaluated via immunohistochemical staining and Western blotting. RESULTS: Group B exhibited a lower Basso, Beattie, and Bresnahan (BBB) score at each time point than group A and group C (p
Source: European Review for Medical and Pharmacological Sciences - Category: Drugs & Pharmacology Tags: Eur Rev Med Pharmacol Sci Source Type: research

Related Links:

Since the discovery of induced pluripotency more than a decade ago, researchers have been working towards the use of this technology to produce cells for use in tissue engineering and regenerative therapies. Induced pluripotent stem cells are functionally equivalent to embryonic stem cells; given suitable recipes and methods for the surrounding environment and signals, they can be made to generate any of the cell types in the body. The cornea of the eye is a comparatively simple starting point for tissue engineering, easier to work with in many ways, in generating tissues and in delivering cells to the patient. Here, the f...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Abstract Spinal cord injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural progenitor cells (NPCs) /neural stem cells (NSCs) have therap...
Source: Current Stem Cell Research and Therapy - Category: Stem Cells Authors: Tags: Curr Stem Cell Res Ther Source Type: research
In this study, we designed SCI models in vivo and in vitro and then investigated the possible mechanism of successful repair by BMSCs-Exos. In vivo, we established one Sham group and two SCI model groups. The Basso, Beattie, Bresnahan (BBB) scores showed that BMSCs-Exos could effectively promote the recovery of spinal cord function. The results of the Nissl staining, immunohistochemistry, and TUNEL/NeuN/DAPI double staining showed that BMSCs-Exos inhibited neuronal apoptosis. Western blot analysis showed that the protein expression level of Bcl-2 was significantly increased in the BMSCs-Exos group compared with the PBS gro...
Source: Cell Transplantation - Category: Cytology Authors: Tags: Cell Transplant Source Type: research
Authors: Tian DZ, Deng D, Qiang JL, Zhu Q, Li QC, Yi ZG Abstract OBJECTIVE: To explore the repair of spinal cord injury (SCI) in rats by umbilical cord mesenchymal stem cells (UCMSCs) through the p38mitogen-activated protein kinase (MAPK) signaling pathway. MATERIALS AND METHODS: A total of 45 healthy adult male Sprague-Dawley rats weighing 180-220 g and aged 6-8 weeks old were randomly divided into group A (SCI model + transplantation of UCMSCs, n=15), group B (sham operation), and group C (SCI model + injection of an equal dose of DMEM, n=15) using a random number table. The morphology of spinal cord tissues ...
Source: European Review for Medical and Pharmacological Sciences - Category: Drugs & Pharmacology Tags: Eur Rev Med Pharmacol Sci Source Type: research
The issue with first generation cell therapies for regenerative medicine is that transplanted cells near entirely fail to engraft into tissue. There are exceptions, but for the most part, the cells used in therapy die rather than take up productive work to enhance tissue function. Where benefits occur, they are mediated by the signals secreted by the transplanted cells in the brief period they remain alive. Mesenchymal stem cell therapies that reduce chronic inflammation for some period of time are an example of the type. They are good at that outcome of reduced inflammation, but highly unreliable when it comes to any othe...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
This article is protected by copyright. All rights reserved.
Source: Journal of Neurochemistry - Category: Neuroscience Authors: Tags: Original Article Source Type: research
Overexpression of TG2 enhances the differentiation of ectomesenchymal stem cells into neuron‑like cells and promotes functional recovery in adult rats following spinal cord injury. Mol Med Rep. 2019 Jul 15;: Authors: Shi W, Que Y, Lv D, Bi S, Xu Z, Wang D, Zhang Z Abstract Ectomesenchymal stem cells (EMSCs) represent a type of adult stem cells derived from the cranial neural crest. These cells are capable of self‑renewal and have the potential for multidirectional differentiation. Tissue transglutaminase type 2 (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca2+‑depend...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research
Abstract Cytology and histology obstacles have been the main barriers to multiple tissues injury repair. In search of the most promising treatment strategies for spinal cord injury (SCI), stem cell-based transplantation coupled with various materials/technologies have been explored extensively to enhance SCI repair. Chitosan (CS) has demonstrated immense potential for widespread application in the form of scaffolds and micro-particles for SCI repair. The current review summarizes the evidences for stem cell-based transplantation and CS in SCI repair. Stem cells transplantation, which plays a key role in the repair...
Source: International Journal of Developmental Neuroscience - Category: Neuroscience Authors: Tags: Int J Dev Neurosci Source Type: research
In this study, autophagy was inhibited in MSCs with lentiviruses expressing short hairpin RNA (shRNA) to knock down Becn-1 expression, and autophagy was upregulated in MSCs under nutrient starvation. These MSCs were then labelled with Hoechst and applied to spinal cord-injured rats to evaluate their therapeutic effects. After transplanting MSCs into rats with spinal cord injuries, functional recovery, immunohistochemistry, and remyelination analyses were performed. After inducing autophagy, the MSCs exhibited an accumulation of LC3-positive autophagosomes in the cytoplasm. The expression levels of neurotrophic factors, inc...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research
Abstract Our earlier work generated a powerful platform technology of polymeric scaffolding of stem cells to investigate and treat the injured or diseased central nervous system. However, the reciprocal sequelae between biophysical properties of the polymer and responses of the stem cell have not been examined in situ in lesioned spinal cords. We postulated that implantable synthetic scaffolds, acting through physical features, might affect donor cell behavior and host tissue remodeling. To test this hypothesis, poly(d,l-lactic-co-glycolic acid) (PLGA) in either low/soft or high/hard rigidity was fabricated for ca...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research
More News: Brain | Drugs & Pharmacology | Gastroschisis Repair | Neurology | Spinal Cord Injury | Stem Cell Therapy | Stem Cells | Transplants