Molecules, Vol. 24, Pages 2870: Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and de novo Evolution

In this study, the predicted compounds were suggested as potent anti-diabetic candidates. Chosen structures were applied following computational strategies: The generation of the three-dimensional quantitative structure-activity relationship (3D QSAR) pharmacophore models, virtual screening, molecular docking, and de novo Evolution. The method also validated by performing re-docking and cross-docking studies of seven protein systems for which crystal structures were available for all bound ligands. The molecular docking experiments of predicted compounds within the binding pocket of DPP-IV were conducted. By using 25 training set inhibitors, ten pharmacophore models were generated, among which hypo1 was the best pharmacophore model with the best predictive power on account of the highest cost difference (352.03), the lowest root mean squared deviation (RMSD) (2.234), and the best correlation coefficient (0.925). Hypo1 pharmacophore model was used for virtual screening. A total of 161 compounds including 120 from the databases, 25 from the training set, 16 from the test set were selected for molecular docking. Analyzing the amino acid residues of the ligand-receptor interaction, it can be concluded that Arg125, Glu205, Glu206, Tyr547, Tyr662, and Tyr666 are the main amino acid residues. The last step in this study was de novo Evolution that generated 11 novel compounds. The derivative dpp4_45_Evo_1 by all scores CDOCKER_ENERGY (CDOCKER, -41.79), LigScore1 (LScore1, 5.86), LigS...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research