Development of Metal Nanoparticle Catalysis toward Drug Discovery.

Development of Metal Nanoparticle Catalysis toward Drug Discovery. Chem Pharm Bull (Tokyo). 2019;67(8):733-771 Authors: Arisawa M Abstract Transition-metal nanoparticles (NPs) catalysts supported on solid material represent one of the most important subjects in organic synthesis due to their reliable carbon-carbon or carbon-heteroatom bond-forming cross-coupling reactions. Therefore methodologically and conceptually novel immobilization methods for nonprecious transition-metal NPs are currently required for the development of organic, inorganic, green, materials, and medicinal chemistry. We discovered a self-assembled Au-supported Pd NPs catalyst (SAPd(0)) and applied it as a catalyst to Suzuki-Miyaura coupling, Buchwald-Hartwig reaction, Carbon(sp2 and sp3)-Hydrogen bond functionalization, double carbonylation, removal of the allyl protecting groups of allyl esters, and redox switching. SAPd(0) comprises approximately 10 layers of self-assembled Pd(0) NPs, whose size is less than 5 nm on the surface of a sulfur-modified Au. The Pd NPs are wrapped in a sulfated p-xylene polymer matrix. We thought that the self-assembled Au-supported Pd NPs could be made by in situ metal NP and nanospace simultaneous organization (PSSO). This methodology involves 4 kinds of simultaneous procedures: i) reduction of a higher valence metal salt, ii) growth of metal NPs with appropriate size, iii) growth of a matrix with appropriate pores, and iv) wrapp...
Source: Chemical and Pharmaceutical Bulletin - Category: Drugs & Pharmacology Authors: Tags: Chem Pharm Bull (Tokyo) Source Type: research