A Primary Computational Fluid Dynamics Study of Pre- and Post-TEVAR With Intentional Left Subclavian Artery Coverage in a Type B Aortic Dissection

The impact of left subclavian artery (LSA) coverage during thoracic endovascular aortic repair (TEVAR) on the circulatory system is not fully understood. Here, we coupled a single-phase non-Newtonian model with fluid –structure interaction (FSI) technique to simulate blood flow in an acute type B aortic dissection. Three-element Windkessel model was implemented to reproduce physiological pressure waves, where a new workflow was designed to determine model parameters with the absence of measured data. Simulatio ns were carried out in three geometric models to demonstrate the consequence of TEVAR with the LSA coverage; case A: pre-TEVAR aorta; case B: post-TEVAR aorta with the disappearance of LSA; case C: post-TEVAR aorta with virtually adding LSA. Results show that the blood flow through the compressed tr ue lumen is only 8.43%, which may lead to ischemia in related organs. After TEVAR, the wall pressure on the stented segment increases and blood flow in the supra-aortic branches and true lumen is improved. Meantime, the average deformation of the aorta is obviously reduced due to the implantation of the stent graft. After virtually adding LSA, significant changes in the distribution of blood flow and two indices based on wall shear stress are observed. Moreover, the movement of residual false lumen becomes stable, which could contribute to patient recovery. Overall, this study quantitatively e valuates the efficacy of TEVAR for acute type B aortic dissection and demonstrat...
Source: Journal of Biomechanical Engineering - Category: Biomedical Engineering Source Type: research