Genomic, Antimicrobial Resistance, and Public Health Insights into Enterococcus spp. from Australian Chickens [Clinical Veterinary Microbiology]

This study evaluated antimicrobial resistance (AMR) of five enterococcal species isolated from Australian meat chickens, genomic features of Enterococcus faecium and Enterococcus faecalis, and the phylogenetic relationship of the poultry-derived E. faecium with isolates from human sepsis cases. All enterococcal isolates from chicken ceca were subjected to antimicrobial susceptibility testing. E. faecium and E. faecalis underwent whole-genome sequencing. E. faecium was compared at the core genome level to a collection of human isolates (n = 677) obtained from cases of sepsis over a 2-year period spanning 2015 to 2016. Overall, 205 enterococci were isolated consisting of five different species. E. faecium was the most frequently isolated species (37.6%), followed by E. durans (29.7%), E. faecalis (20%), E. hirae (12.2%), and E. gallinarum (0.5%). All isolates were susceptible to vancomycin and gentamicin, while one isolate was linezolid resistant (MIC 16 mg/liter). Core genome analysis of the E. faecium demonstrated two clades consisting predominantly of human or chicken isolates in each clade, with minimal overlap. Principal component analysis for total gene content revealed three clusters comprised of vanA-positive, vanB-positive, and both vanA- and vanB-negative E. faecium populations. The results of this study provide strong evidence that Australian chicken E. faecium isolates are unlikely to be precursor strains to the currently circulating vancomycin-resistant strains bei...
Source: Journal of Clinical Microbiology - Category: Microbiology Authors: Tags: Clinical Veterinary Microbiology Source Type: research