Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H2O2 Production.

Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H2O2 Production. Cardiovasc Toxicol. 2019 Jul 23;: Authors: Fardin PBA, Simões RP, Schereider IRG, Almenara CCP, Simões MR, Vassallo DV Abstract Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in s...
Source: Cardiovascular Toxicology - Category: Cardiology Authors: Tags: Cardiovasc Toxicol Source Type: research