Stem Cell Extracellular Vesicles and their Potential to Contribute to the Repair of Damaged CNS Cells

AbstractNeurological diseases and disorders are leading causes of death and disability worldwide. Many of these pathologies are associated with high levels of neuroinflammation and irreparable tissue damage. As the global burden of these pathologies continues to rise there is a significant need for the development of novel therapeutics. Due to their multipotent properties, stem cells have broad applications for tissue repair; additionally, stem cells have been shown to possess both immunomodulatory and neuroprotective properties. It is now believed that paracrine factors, such as extracellular vesicles (EVs), play a critical role in the functionality associated with stem cells. The diverse biological cargo contained within EVs are proposed to mediate these effects and, to date, the reparative and regenerative effects of stem cell EVs have been demonstrated in a wide range of cell types. While a high potential for their therapeutic use exists, there is a gap of knowledge surrounding their characterization, mechanisms of action, and how they may regulate cells of the CNS. Here, we report the isolation, characterization, and functional assessment of EVs from two sources of human stem cells, mesenchymal stem cells and induced pluripotent stem cells. We demonstrate the ability of these EVs to enhance the processes of cellular migration and angiogenesis, which are critical for both normal cellular development as well as cellular repair. Furthermore, we investigate their reparative ...
Source: Journal of NeuroImmune Pharmacology - Category: Drugs & Pharmacology Source Type: research

Related Links:

AbstractStroke is the second leading cause of death and main cause of disability worldwide, but with few effective therapies. Although stem cell-based therapy has been proposed as an exciting regenerative medicine strategy for brain injury, there are limitations. The developed cerebral organoids (COs) represent a promising transplantation source for stroke that remains to be answered. Here, we transplanted COs at 55  days and explored the feasibility in the rat middle cerebral artery occlusion (MCAO) model of stroke. COs transplantation at 6 h or even 24 h after MCAO significantly reduces brain infarct volum...
Source: Translational Stroke Research - Category: Neurology Source Type: research
This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts. BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence-associated β-galactosidase (SA-β-gal)-positive cell rates of late PD cells grown in the BBR-containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, by adenovirus-mediated delivery and inducible transgenic mouse models, we demonstrate the proliferation of both HCs and SCs by combined Notch1 and Myc activation in in vitro and in vivo inner ear adult mouse models. These proliferating mature SCs and HCs maintain their respective identities. Moreover, when presented with HC induction signals, reprogrammed adult SCs transdifferentiate into HC-like cells both in vitro and in vivo. Finally, our data suggest that regenerated HC-like cells likely possess functional transduction channels and are able to form connections with adult auditory neurons. Epige...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
The lack of effective therapies for moderate-to-severe traumatic brain injures (TBIs) leaves patients with lifelong disabilities. Neural stem cells (NSCs) have demonstrated great promise for neural repair and regeneration. However, direct evidence to suppo...
Source: SafetyLit - Category: International Medicine & Public Health Tags: Economics of Injury and Safety, PTSD, Injury Outcomes Source Type: news
ConclusionsMSCs transplantation proved to be a safe and tolerable therapy. Their potential therapeutic benefits were also validated. However, larger placebo controlled blinded clinical trials will be required to establish the long term safety and efficacy profile of these therapies for MS. Their translation into the clinical practice can provide a new hope for the patients of this highly debilitating disease.
Source: Multiple Sclerosis and Related Disorders - Category: Neurology Source Type: research
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found athttps://cos.io/our-services/open-science-badges/.
Source: Journal of Neurochemistry - Category: Neuroscience Authors: Tags: Original Article Source Type: research
ABSTRACTTransforming growth factor ‐β1 (TGF‐β1) is a key factor in bone reconstruction. However, its pathophysiological role in non‐union and bone repair remains unclear. Here we demonstrated that TGF‐β1 was highly expressed in both C57BL/6 mice where new bone formation was impaired after autologous bone marrow mesenchymal stem cell (BMMSC) implantation in non‐union patients. High doses of TGF‐β1 inhibited BMMSC osteogenesis and attenuated bone regeneration in vivo. Furthermore, different TGF‐β1 levels exhibited opposite effects on osteogenic differentiation and bone healing. Mechanis...
Source: Journal of Bone and Mineral Research - Category: Orthopaedics Authors: Tags: Original Article Source Type: research
In this study, AT1-AAs were detected in the sera of patients with peripheral arterial disease (PAD) and the positive rate was 44.44% vs. 17.46% in non-PAD volunteers. In addition, analysis showed that AT1-AAs level was positively correlated with PAD. To reveal the causal relationship between AT1-AAs and vascular aging, an AT1-AAs-positive rat model was established by active immunization. The carotid pulse wave velocity was higher, and the aortic endothelium-dependent vasodilatation was attenuated significantly in the immunized rats. Morphological staining showed thickening of the aortic wall. Histological examination showe...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, our findings link the calcification of the vascular tissue with the expression of FGF23 in the vessels and with the elevation of circulating levels this hormone. Permanently Boosting Levels of Natural Killer Cells in Mice to Increase Cancer Resistance https://www.fightaging.org/archives/2019/09/permanently-boosting-levels-of-natural-killer-cells-in-mice-to-increase-cancer-resistance/ Researchers here demonstrate a very interesting approach to immunotherapy: they introduce engineered stem cells in mice that will give rise to additional natural killer T cells, boosting the capability of the ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Brain | Disability | Drugs & Pharmacology | Gastroschisis Repair | Neurology | Stem Cell Therapy | Stem Cells