Impaired hippocampal and thalamic acetylcholine release in P301L tau-transgenic mice.

Impaired hippocampal and thalamic acetylcholine release in P301L tau-transgenic mice. Brain Res Bull. 2019 Jul 16;: Authors: Stein C, Koch K, Hopfeld J, Lobentanzer S, Lau H, Klein J Abstract We evaluated acetylcholine release by microdialysis in 10 month old control and JNPL3 mice which carry a mutant tau gene (P301 L). Three brain regions were compared: hippocampus and thalamus which receive cholinergic input from the basal forebrain, and the red nucleus which receives cholinergic projections from brain stem nuclei. Cognitive and motor functions of the mice were largely normal. In microdialysis experiments, we found significant reductions in basal ACh levels in hippocampus and thalamus, but not in the red nucleus. ACh release was impaired most strongly (by 50%) when a physiological stimulus was applied, i.e. exploration of a novel environment, whereas most mice responded adequately with an increase of ACh release upon infusion of scopolamine. A strong reduction of scopolamine-mediated ACh release was seen after amyloid Aß42 peptide was administered into the hippocampus of tau-transgenic mice. Choline acetyltransferase activities were unchanged in tau-transgenic mice but acetylcholinesterase activities were increased in thalamus. Lactate and choline levels were increased in tau-transgenic mice but high-affinity choline uptake was slightly reduced. Our data suggest that even mild to moderate tau pathology in JNPL3 mice is able to ...
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research