Sb(V) adsorption and desorption onto ferrihydrite: influence of pH and competing organic and inorganic anions.

In this study, we investigated the Sb(V) adsorption on ferrihydrite (Fh) at different pH values, in the presence and absence of common competing anions in soil such as phosphate (P(V)) and arsenate (As(V)). Batch adsorption experiments, carried out at pH 4.5, 6.0, and 7.0, showed a greater affinity of Fh towards P(V) and As(V) with respect to Sb(V), especially at higher pH values, while the opposite was true at acidic pH. The capacity of Fh to accumulate greater amounts of phosphate and arsenate in the 6.0-7.0 pH range was mainly linked to the different acid properties of P(V), As(V), and Sb(V) oxyanions. The Sb(V) adsorption on Fh was highly pH-dependent and followed the following order: pH 4.5 (0.957 mmol·g-1 Fh) > pH 6.0 (0.701 mmol·g-1 Fh) > pH 7.0 (0.583 mmol·g-1 Fh). Desorption of antimonate from Sb(V)-saturated Fh, treated with citric and malic acid solutions, was ~equal to 55, 68, and 76% of that sorbed at pH 4.5, 6.0, and 7.0, respectively, while phosphate, arsenate, and sulfate were able to release significantly lower Sb(V) amounts. The FT-IR spectra revealed substantial absorbance shifts related to the surface hydroxyl groups of Fh, which were attributed to the formation of Fe-O-Sb(V) bonds and supported the formation of inner-sphere bonding between Sb(V) and Fh. PMID: 31321722 [PubMed - as supplied by publisher]
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Tags: Environ Sci Pollut Res Int Source Type: research