Mechanism of Hydrogen Sulfide Preconditioning-Associated Protection Against Ischemia-Reperfusion Injury Differs in Diabetic Heart That Develops Myopathy.

Mechanism of Hydrogen Sulfide Preconditioning-Associated Protection Against Ischemia-Reperfusion Injury Differs in Diabetic Heart That Develops Myopathy. Cardiovasc Toxicol. 2019 Jul 17;: Authors: Ansari M, Kurian GA Abstract Hydrogen sulfide (H2S) is reported to be effective in the management of the myocardial ischemia-reperfusion (I/R) injury via PI3K/GSK3β pathway in normal rats. However, its efficacy against I/R in the presence of diabetic cardiomyopathy is relatively obscure. Thus, the present work aimed to find out H2S-mediated cardioprotection against I/R in diabetic cardiomyopathy and to evaluate its mode of action using Langendorff isolated heart perfusion system. The present work includes three groups of rat, viz. (i) normal, (ii) diabetes mellitus (DM: streptozotocin: 35 mg/kg; normal diet), and (iii) diabetes + high-fat diet (DCM) (streptozotocin: 35 mg/kg; high-fat diet). The effect of NaHS (an H2S donor; 20 µM) on cardiac function in isolated rat hearts demonstrates that H2S preconditioning (HIPC) significantly attenuated myocardial injury in both DM and DCM hearts, as evidenced by the (i) improvement in hemodynamics, which includes rate pressure product [(in mmHg × 103 × bpm) DM: 40 to 56; DCM: 21 to 58] and left ventricular developed pressure [(in mmHg) DM: 53 to 74; DCM: 28 to 74), (ii) reduction in infarct size (25% to 8%) and attenuated caspase activity, compared to their respective I/R controls....
Source: Cardiovascular Toxicology - Category: Cardiology Authors: Tags: Cardiovasc Toxicol Source Type: research