Cancers, Vol. 11, Pages 1011: Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin

Cancers, Vol. 11, Pages 1011: Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin Cancers doi: 10.3390/cancers11071011 Authors: Javier Menéndez-Menéndez Francisco Hermida-Prado Rocío Granda-Díaz Alicia González Juana María García-Pedrero Nagore Del-Río-Ibisate Alicia González-González Samuel Cos Carolina Alonso-González Carlos Martínez-Campa Melatonin mitigates cancer initiation, progression and metastasis through inhibition of both the synthesis of estrogens and the transcriptional activity of the estradiol-ER (Estrogen receptor) complex in the estrogen-dependent breast cancer cell line MCF-7. Moreover, melatonin improves the sensitivity of MCF-7 to chemotherapeutic agents and protects against their side effects. It has been described that melatonin potentiates the anti-proliferative effects of doxorubicin; however, the molecular changes involving gene expression and the activation/inhibition of intracellular signaling pathways remain largely unknown. Here we found that melatonin enhanced the anti-proliferative effect of doxorubicin in MCF-7 but not in MDA-MB-231 cells. Strikingly, doxorubicin treatment induced cell migration and invasion, and melatonin effectively counteracted these effects in MCF-7 but not in estrogen-independent MDA-MB-231 cells. Importantly, we describe for the first time the...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Article Source Type: research