Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue.

Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue. Cell Transplant. 2019 Jul 15;:963689719863809 Authors: Nitobe Y, Nagaoki T, Kumagai G, Sasaki A, Liu X, Fujita T, Fukutoku T, Wada K, Tanaka T, Kudo H, Asari T, Furukawa KI, Ishibashi Y Abstract Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent stem cells that can be isolated based on stage-specific embryonic antigen-3 (SSEA-3), a pluripotent stem cell-surface marker. However, their capacities for survival, neurotrophic factor secretion, and neuronal and glial differentiation are unclear in rodents. Here we analyzed mouse adipose tissue-derived Muse cells in vitro. We collected mesenchymal stem cells (MSCs) from C57BL/6 J mouse adipose tissue and separated SSEA-3+, namely Muse cells, and SSEA-3-, non-Muse cells, to assess self-renewability; pluripotency marker expression (Nanog, Oct3/4, Sox2, and SSEA-3); spontaneous differentiation into endodermal, mesodermal, and ectodermal lineages; and neural differentiation capabilities under cytokine induction. Neurally differentiated Muse and non-Muse cell functions were assessed by calcium imaging. Antioxidant ability was measured to assess survival under oxidative stress. Brain-derived neurotrophic factor (BDNF), vascular endothelial cell growth factor (VEGF), and hepatocyte growth factor (HGF) se...
Source: Cell Transplantation - Category: Cytology Authors: Tags: Cell Transplant Source Type: research