EMG-Informed Musculoskeletal Modeling to Estimate Realistic Knee Anterior Shear Force During Drop Vertical Jump in Female Athletes.

The objective of this study was to develop electromyography-informed musculoskeletal simulations of the drop vertical jump motor task and assess the contribution of knee muscle forces to tibial anterior shear force. In this cross-sectional study, musculoskeletal simulations were used to estimate the muscle forces of thirteen female athletes performing a drop vertical jump using an electromyography-informed method. Muscle activation and knee loads that resulted from these simulations were compared to the results obtained with the more common approach of minimization of muscle effort (optimization-based method). Quadriceps-hamstrings and quadriceps-gastrocnemius co-contractions were progressively increased and their contribution to anterior shear force was quantified. The electromyography-informed method produced co-contraction indexes more consistent with electromyography data than the optimization-based method. The muscles that presented the largest contribution to peak anterior shear force were the gastrocnemii, likely from their wrapping around the posterior aspect of the tibia. The quadriceps-hamstring co-contraction provided a protective effect on the ACL and reduced peak anterior shear force by 292 N with a co-contraction index increase of 25% from baseline (31%), whereas a quadriceps-gastrocnemius co-contraction index of 61% increased peak anterior shear force by 797 N compared to baseline (42%). An increase in gastrocnemius contraction, which might be required to pro...
Source: Annals of Biomedical Engineering - Category: Biomedical Engineering Authors: Tags: Ann Biomed Eng Source Type: research