A review of cable-driven rehabilitation devices.

Conclusions: Each category of CDRDs has its own advantages and shortcomings. The selection of a CDRD highly depends on the specific application. Regarding the convenience of setting up a CDRD for rehabilitation, parallel CDRDs usually have better adaptability than serial ones. However, uncertainties come with parallel CDRDs, which makes the control of parallel CDRDs more challenging. Moreover, the strategy of inherent safety has a great potential to further improve the safety of CDRDs. Implications for rehabilitation CDRDs (and general RRDs) can deliver high-intensity training while therapists usually cannot. With up-to-date human-robot interaction techniques (e.g., virtual reality), CDRDs are more interesting and motivating to trainees than conventional manual rehabilitation therapies. CDRDs also provide financial benefits in the long-run. Currently existing RRDs available for clinical practice are mainly designed for the rehabilitation of shoulders, elbows, and knees. Parallel exoskeleton-based CDRDs can also be used for the rehabilitation of many other parts of trainees. Thus, CDRDs extend the coverage of RRDs in rehabilitation. Owing to their simple structures and light weights, CDRDs can be portable and used for rehabilitation at home. In this way, CDRDs can improve the duration and intensity of rehabilitation for those with limited access to rehabilitation institutes. As well known, the higher intensity of training leads to a higher rate of recovery. PMID: 31287...
Source: Disability and Rehabilitation. Assistive Technology. - Category: Rehabilitation Authors: Tags: Disabil Rehabil Assist Technol Source Type: research