Max-imizing the Attenuation of Myc Using Small Molecules

Publication date: Available online 4 July 2019Source: Trends in Pharmacological SciencesAuthor(s): Shelton R. Boyd, Damian W. YoungIt has been a widely held notion within the biomedical research community that the reliable modulation of transcription factors with small molecules would represent a holy grail, given their role in directly potentiating oncogenic programs. Among the transcription factors that have been held in highest regard is Myc, since its dysregulation is among the most recurrent events in human cancer. Despite intense efforts, the ability to identify compounds that bind directly to Myc, resulting in its functional inhibition, have been met with only moderate success. However, a new approach reported by Struntz et al. (Cell Chem. Biol., 2019) focuses on a different strategy of discovering molecules that bind to Myc’s obligate partner Max. Using a small-molecule microarray screen, they report the identification of KI-MS2-008, a compound that results in the stabilization of Max homodimers and the attenuation of Myc. KI-MS2-008 suppresses cancer cell grown both in vitro and within in vivo models.
Source: Trends in Pharmacological Sciences - Category: Drugs & Pharmacology Source Type: research