Phy-PMRFI: Phylogeny-Aware Prediction of Metagenomic Functions Using Random Forest Feature Importance

High-throughput sequencing techniques have accelerated functional metagenomics studies through the generation of large volumes of omics data. The integration of these data using computational approaches is potentially useful for predicting metagenomic functions. Machine learning (ML) models can be trained using microbial features which are then used to classify microbial data into different functional classes. For example, ML analyses over the human microbiome data has been linked to the prediction of important biological states. For analysing omics data, integrating abundance count of taxonomical features with their biological relationships is important. These relationships can potentially be uncovered from the phylogenetic tree of microbial taxa. In this paper, we propose a novel integrative framework Phy-PMRFI. This framework is driven by the phylogeny-based modeling of omics data to predict metagenomic functions using important features selected by a random forest importance (RFI) strategy. The proposed framework integrates the underlying phylogenetic tree information with abundance measures of microbial species (features) by creating a novel phylogeny and abundance aware matrix structure (PAAM). Phy-PMRFI progresses by ranking the microbial features using an RFI measure. This is then used as input for microbiome classification. The resultant feature set enhances the performance of the state-of-art methods such as support vector machines. Our proposed integrative framewor...
Source: IEE Transactions on NanoBioscience - Category: Nanotechnology Source Type: research