An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries

AbstractElectrical impedance tomography (EIT) is a non-invasive and real-time imaging method that has the potential to be used for monitoring intracerebral hemorrhage (ICH). Recent studies have proposed that ischemia secondary to ICH occurs simultaneously in the brain. Real-time monitoring of the development of hemorrhage and risk of secondary ischemia is crucial for clinical intervention. However, few studies have explored the performance of EIT monitoring in cases where hemorrhage and secondary ischemia exist. When these lesions get close to each other, or their conductivity and volume changes differ greatly, it becomes challenging for dynamic EIT algorithms to simultaneously reconstruct subtle injuries. To address this, an iterative damped least-squares (IDLS) algorithm is proposed in this study. The quality of the IDLS algorithm was assessed using blur radius and temporal response during computer simulation and a phantom 3D head-shaped model where bidirectional disturbance targets were simulated. The results showed that the IDLS algorithm enhanced contrast and concurrently reconstructed bidirectional disturbance targets in images. Moreover, it showed superior performance in decreasing the blur radius and was time cost-effective. With further improvement, the IDLS algorithm has the potential to be used for monitoring the development of hemorrhage and risk of ischemia secondary to ICH.Graphical abstract(a) and (b) are simulation images of bidirectional disturbance targets w...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research