A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness.

A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virol. 2019;63(2):129-138 Authors: Yoder KE Abstract The integrated proviral genome is the major barrier to a cure for HIV-1 infection. Genome editing technologies, such as CRISPR/Cas9, may disable or remove the HIV-1 provirus by introducing DNA double strand breaks at sequence specific sites in the viral genome. Host DNA repair by the error-prone non-homologous end joining pathway generates mutagenic insertions or deletions at the break. CRISPR/Cas9 editing has been shown to reduce replication competent viral genomes in cell culture, but only a minority of possible genome editing targets have been assayed. Currently there is no map of double strand break genetic fitness for HIV-1 to inform the choice of editing targets. However, CRISPR/Cas9 genome editing makes it possible to target double strand breaks along the length of the provirus to generate a double strand break genetic fitness map. We identified all possible HIV-1 targets with different bacterial species of CRISPR/Cas9. This library of guide RNAs was evaluated for GC content and potential off-target sites in the human genome. Complexity of the library was reduced by eliminating duplicate guide RNA targets in the HIV-1 long terminal repeats and targets in the env gene. Although the HIV-1 genome is AT-rich, the S. pyogenes CRISPR/Cas9 with the proto-spacer adjacent motif NGG offers the most HIV-1 guide RNAs....
Source: Acta Virologica - Category: Infectious Diseases Authors: Tags: Acta Virol Source Type: research