On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli

Publication date: Available online 25 June 2019Source: Microbial PathogenesisAuthor(s): María Eloísa Poey, María F. Azpiroz, Magela LaviñaAbstractClass 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1+ conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1+ plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and th...
Source: Microbial Pathogenesis - Category: Infectious Diseases Source Type: research