Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer.

Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer. Immunol Invest. 2019 Jun 21;:1-22 Authors: Banach M, Robert J Abstract Cancers impose a significant health and economic burden. By harnessing the immune system, current immunotherapies have revolutionized the treatment against human cancers and potentially offer a long-term cure. Among others, innate-like T (iT) cells, including natural killer T cells, are promising candidates for immunotherapies. Unlike conventional T cells, iT cells regulate multiple immune processes and express an invariant T cell receptor that is shared among different individuals. However, the conditions that activate the pro- and antitumor functions of iT cells are partially understood. These gaps in knowledge hamper the use of iT cell in clinics. It might be beneficial to examine the roles of iT cells in an alternative animal model - the amphibian Xenopus whose immune system shares many similarities to that of mammals. Here, we review the iT cell biology in the context of mammalian cancers and discuss the challenges currently found in the field. Next, we introduce the advantages of Xenopus as a model to investigate the role of iT cells and interacting major histocompatibility complex (MHC) class I-like molecules in tumor immunity. In Xenopus, 2 specific iT cell subsets, Vα6 and Vα22 iT cells, recognize and fight tumor cells. Furthermore, our recent data reveal the complex functions o...
Source: Immunological Investigations - Category: Allergy & Immunology Tags: Immunol Invest Source Type: research