Neuroprotective effect of anodal transcranial direct current stimulation on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice through modulating mitochondrial dynamics

Publication date: Available online 21 June 2019Source: Neurochemistry InternationalAuthor(s): Sang-Bin Lee, Jinyoung Youn, Wooyoung Jang, Hyun Ok YangAbstractParkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of protein inclusions and the loss of dopaminergic neurons. Abnormal mitochondrial homeostasis is thought to be important for the pathogenesis of PD. Transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique, constitutes a promising approach for promoting recovery of various neurological conditions. However, little is known about its mechanism of action. The present study elucidated the neuroprotective effects of tDCS on the mitochondrial quality control pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We used the MPTP-induced neurotoxicity in vivo model. Mice were stimulated for 5 consecutive days with MPTP treatment. After observation of behavioral alteration using the rotarod test, mice were sacrificed for the measurement of the PD- and mitochondrial quality control-related protein levels in the substantia nigra. tDCS improved the behavioral alterations and changes in tyrosine hydroxylase levels in MPTP-treated mice. Furthermore, tDCS attenuated mitochondrial damage, as indicated by diminished mitochondrial swelling and mitochondrial glutamate dehydrogenase activity in the MPTP-induced PD mouse model. MPTP significantly increased mitophagy and decreased mito...
Source: Neurochemistry International - Category: Neuroscience Source Type: research