Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity.

The objective of present study was to develop hydrogel based nanoemulsion (NE) drug delivery system for transdermal delivery and evaluate its potential in in vivo anti-osteoporotic activity. NE was prepared using aqueous phase titration method and characterized for droplet size, zeta potential and morphology. It was then formulated into hydrogel based NE gel using carbopol 940 as gelling agent. NE gel was evaluated for pH, viscosity, in vitro/ex vivo permeation studies and in vivo anti-osteoporotic activity. The results indicated formation of spherical, nano sized globules of NE ranging from 11.17 ± 0.24 to 128.8 ± 0.16 nm with polydispersity of <0.5. In vitro and ex vivo permeation studies showed significantly higher permeation of NE as well as NE gel in comparison to fluvastatin solution indicating that NE gel can effectively penetrate through skin layers. In vivo anti-osteoporotic results demonstrated formation of new bone in trabecular region of osteoporotic rat femurs through micro-CT scanning radiographs. Biomechanical strength testing demonstrated greater load bearing capacity of rat femurs in the treated animals in comparison with the osteoporotic group. Thus, developed NE gel formulation of fluvastatin demonstrated greater potential for transdermal delivery and in the treatment of osteoporosis. PMID: 31202895 [PubMed - as supplied by publisher]
Source: European Journal of Pharmaceutical Sciences - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharm Sci Source Type: research