Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffi) using the methanol free GAP promoter. Where do we stand?

Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffi) using the methanol free GAP promoter. Where do we stand? N Biotechnol. 2019 Jun 10;: Authors: García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F Abstract The increasing demand for recombinant proteins for a wide range of applications, from biopharmaceutical protein complexes to industrial enzymes, is leading to important growth in this market. Among the different efficient host organism alternatives commonly used for protein production, the yeast Pichia pastoris (Komagataella phaffi) is currently considered to be one of the most effective and versatile expression platforms. The promising features of this cell factory are giving rise to interesting studies covering the different aspects that contribute to improving the bioprocess efficiency, from strain engineering to bioprocess engineering. The numerous drawbacks of using methanol in industrial processes are driving interest towards methanol-free alternatives, among which the GAP promoter-based systems stand out. The aim of this work is to present the most promising innovative developments in operational strategies based on rational approaches through bioprocess engineering tools. This rational design should be based on physiological characterization of the producing strains under bioprocess conditions and its interrelation...
Source: New Biotechnology - Category: Biotechnology Authors: Tags: N Biotechnol Source Type: research
More News: Biotechnology | Study