The role of network structure and time delay in a metapopulation Wilson--Cowan model

Publication date: 21 September 2019Source: Journal of Theoretical Biology, Volume 477Author(s): Federica Conti, Robert A. Van GorderAbstractWe study the dynamics of a network Wilson--Cowan model (a system of connected Wilson--Cowan oscillators) for interacting excitatory and inhibitory neuron populations with time delays. Each node in this model corresponds to a population of neurons, including excitatory and inhibitory subpopulations, and hence it can be viewed as a metapopulation model. It is known that information transfer within each cortical area is not instantaneous, and therefore we consider a system of delay differential equations with two different kinds of discrete delays. We account for the time delay in information propagation between individual excitatory and inhibitory subpopulations at each node via intra-node time delays, and we account for time delay in information propagation between neuron populations at different nodes with inter-node time delays. The biologically relevant resting state solutions are oscillatory (stable limit cycles). After determining the influence of the coupling parameters between nodes, the intra-node delays, and the inter-node delays on the dynamics of the two coupled Wilson--Cowan oscillators, we then explore a variety of larger networks of 16 and 100 nodes, in order to determine how the network topology will influence time delayed Wilson--Cowan dynamics. We find that network structure can regularize or deregularize the dynamics, wit...
Source: Journal of Theoretical Biology - Category: Biology Source Type: research
More News: Biology | Brain | Neurology | Study