CDK5 inhibits the clathrin-dependent internalization of TRPV1 by phosphorylating the clathrin adaptor protein AP2{mu}2

Transient receptor potential vanilloid 1 (TRPV1), a nonselective, ligand-gated cation channel, responds to multiple noxious stimuli and is targeted by many kinases that influence its trafficking and activity. Studies on the internalization of TRPV1 have mainly focused on that induced by capsaicin or other agonists. Here, we report that constitutive internalization of TRPV1 occurred in a manner dependent on clathrin, dynamin, and adaptor protein complex 2 (AP2). The μ2 subunit of AP2 (AP2μ2) interacted directly with TRPV1 and was required for its constitutive internalization. Cyclin-dependent kinase 5 (CDK5) phosphorylated AP2μ2 at Ser45, which reduced the interaction between TRPV1 and AP2μ2, leading to decreased TRPV1 internalization. Intrathecal delivery of a cell-penetrating fusion peptide corresponding to the Cdk5 phosphorylation site in AP2μ2, which competed with AP2μ2 for phosphorylation by Cdk5, increased the abundance of TRPV1 on the surface of dorsal root ganglion neurons and reduced complete Freund’s adjuvant (CFA)–induced inflammatory thermal hyperalgesia in rats. In addition to describing a mechanism of TRPV1 constitutive internalization and its inhibition by CDK5, these findings demonstrate that CDK5 promotes inflammatory thermal hyperalgesia by reducing TRPV1 internalization, providing previously unidentified insights into the search for drug targets to treat pain.
Source: Signal Transduction Knowledge Environment - Category: Science Authors: Tags: STKE Research Articles Source Type: news