Examination of the Effects of Curvature in Geometrical Space on Accuracy of Scaling Derived Projections of Plant Biomass Units: Applications to the Assessment of Average Leaf Biomass in Eelgrass Shoots.

Examination of the Effects of Curvature in Geometrical Space on Accuracy of Scaling Derived Projections of Plant Biomass Units: Applications to the Assessment of Average Leaf Biomass in Eelgrass Shoots. Biomed Res Int. 2019;2019:3613679 Authors: Echavarría-Heras H, Leal-Ramírez C, Villa-Diharce E, Montesinos-López A Abstract Conservation of eelgrass relies on transplants and evaluation of success depends on nondestructive measurements of average leaf biomass in shoots among other variables. Allometric proxies offer a convenient way to assessments. Identifying surrogates via log transformation and linear regression can set biased results. Views conceive this approach to be meaningful, asserting that curvature in geometrical space explains bias. Inappropriateness of correction factor of retransformation bias could also explain inconsistencies. Accounting for nonlinearity of the log transformed response relied on a generalized allometric model. Scaling parameters depend continuously on the descriptor. Joining correction factor is conceived as the partial sum of series expansion of mean retransformed residuals leading to highest reproducibility strength. Fits of particular characterizations of the generalized curvature model conveyed outstanding reproducibility of average eelgrass leaf biomass in shoots. Although nonlinear heteroscedastic regression resulted also to be suitable, only log transformation approaches can unmask a size rel...
Source: Biomed Res - Category: Research Authors: Tags: Biomed Res Int Source Type: research
More News: Research | Transplants