Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease.

Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed Res Int. 2019;2019:3950628 Authors: Ning L, Shan G, Sun Z, Zhang F, Xu C, Lou X, Li S, Du H, Chen H, Xu G Abstract Inflammatory bowel disease (IBD) has become a major health challenge worldwide. However, the precise etiological and pathophysiological factors involved in IBD remain unclear. Proteomics can be used for large-scale protein identification analysis. In the current study, using tandem mass tag- (TMT-) based shotgun proteomics, proteomic differences between intestinal tissue from health controls, patients with Crohn's disease (CD), and patients with ulcerative colitis (UC) were compared. Proteins with fold change >2 or <0.5 and P value < 0.05 between groups were considered differentially expressed. ProteinAtlas was used to analyze the tissue specificity of differentially expressed proteins (DEPs). Reactome pathway analysis was applied to cluster functional pathways. A total of 4786 proteins were identified, with 59 proteins showing higher levels and 43 showing lower levels in patients with IBD than in controls. Seventeen proteins, including angiotensin converting enzyme 2 (ACE2) and angiotensin converting enzyme 1 (ACE), showed higher levels in CD than in UC. Several novel proteins such as CD38, chitinase 3-like 1 (CHI3L1), olfactomedin 4 (OLFM4), and intelectin 1 we...
Source: Biomed Res - Category: Research Authors: Tags: Biomed Res Int Source Type: research