Study of the Osteoindictive Properties of Protein-Modified Polylactide Scaffolds

Bone marrow mesenchymal stromal cells are multipotent and can differentiate into cells of various tissues, which determines their high importance for clinical application. We performed anin vitro study of the osteogenic potential of mesenchymal stromal cells cultured on intact polylactide scaffolds or scaffolds modified with collagen I or fibrin. Scanning electron microscopy showed that the cells formed osteogenic nodules or osteogenic nodules on both intact and fibrin-modified polylactide scaffolds. Spectrophotometric detection of alkaline phosphatase activity on days 7 and 11 showed that mesenchymal stromal cell grown on intact polylactide scaffolds and on scaffolds modified with collagen type I or fibrin more intensively synthesized alkaline phosphatase than in the control (culture plastic). This dependence increases in the presence of osteogenic differentiation factors in the medium. After long-term culturing (4 weeks), the presence of calcium deposits detected by alizarin red staining confirmed the osteoinductive properties of intact and protein-modified polylactide scaffolds. These findings suggest that polylactide scaffolds and collagen I increase the osteogenic differentiation potential of mesenchymal stromal cells.
Source: Bulletin of Experimental Biology and Medicine - Category: Biology Source Type: research
More News: Biology | Calcium | PET Scan | Study