Activation of the p38/MAPK pathway regulates autophagy in response to the CYPOR-dependent oxidative stress induced by zearalenone in porcine intestinal epithelial cells.

In this study, we aimed to find the potential protective mechanism against ZEA ingestion. We found that ZEA induced cell death in IPEC-J2 cells. Meanwhile, the cytoprotective autophagy was activated in ZEA-treated cells. Further studies demonstrated that a p38/MAPK inhibitor down-regulated autophagy and increased cell death compared to those of the controls. Furthermore, ZEA could induce the accumulation of ROS, and eliminating ROS with NAC resulted in a decline in cell death, p38/MAPK phosphorylation, and the expression of LC3-II compared to those of ZEA-group. In addition, cytochrome P450 reductase (CYPOR) was significantly increased in ZEA-treated cells compared to that in the controls, and an inhibitor of CYPOR decreased ROS levels and mitigated cell death compared to those of the ZEA-group. More importantly, we found that blocking both p38/MAPK signalling and autophagy could enhance CYPOR expression and elevate ROS levels. Overall, our study indicated that the p38/MAPK pathway could activate protective autophagy in response to the CYPOR-dependent oxidative stress that was induced by ZEA in IPEC-J2 cells. PMID: 31173817 [PubMed - as supplied by publisher]
Source: Food and Chemical Toxicology - Category: Food Science Authors: Tags: Food Chem Toxicol Source Type: research