Syntroph diversity and abundance in anaerobic digestion revealed through a comparative core microbiome approach.

In this study, a comparative core microbiome approach, i.e., determining taxa that are shared in functioning digesters but not shared in non-functioning digesters, was used to determine microbial taxa that could play key roles for effective anaerobic digestion. Anaerobic digester functions were impaired by adding the broad-spectrum antimicrobial triclosan (TCS) or triclocarban (TCC) at different concentrations, and the core microbiomes in both functioning and non-functioning anaerobic digesters were compared. Digesters treated with high (2500 mg/kg) or medium (450 mg/kg) TCS and high (850 mg/kg) TCC concentrations lost their function, i.e., methane production decreased, effluent volatile fatty acid concentrations increased, and pH decreased. Changes in microbial community diversity and compositions were assessed using 16S rRNA gene amplicon sequencing. Microbial richness decreased significantly in non-functioning digesters (p < 0.001). Microbial community compositions in non-functioning digesters significantly differed from those in functioning digesters (p = 0.001, ANOSIM). Microbes identified as potentially key taxa included previously known fatty acid-degrading syntrophs and amino acid-degrading syntrophs. A diverse group of syntrophs detected in this study had low relative abundance in functioning digesters, suggesting the importance of rare microbes in anaerobic digester operation. The comparative microbiome approach used in this study can be applied to ot...
Source: Applied Microbiology and Biotechnology - Category: Microbiology Authors: Tags: Appl Microbiol Biotechnol Source Type: research